39,295 research outputs found

    Advanced dosimetry systems for the space transport and space station

    Get PDF
    Advanced dosimetry system concepts are described that will provide automated and instantaneous measurement of dose and particle spectra. Systems are proposed for measuring dose rate from cosmic radiation background to greater than 3600 rads/hr. Charged particle spectrometers, both internal and external to the spacecraft, are described for determining mixed field energy spectra and particle fluxes for both real time onboard and ground-based computer evaluation of the radiation hazard. Automated passive dosimetry systems consisting of thermoluminescent dosimeters and activation techniques are proposed for recording the dose levels for twelve or more crew members. This system will allow automatic onboard readout and data storage of the accumulated dose and can be transmitted to ground after readout or data records recovered with each crew rotation

    Phase sensitive Brillouin scattering measurements with a novel magneto-optic modulator

    Full text link
    A recently reported phase sensitive Brillouin light scattering technique is improved by use of a magnetic modulator. This modulator is based on Brillouin light scattering in a thin ferrite film. Using this magnetic modulator in time- and space Brillouin light scattering measurements we have increased phase contrast and excluded influence of optical inhomogeneities in the sample. We also demonstrate that the quality of the resulting interference patterns can be improved by data postprocessing using the simultaneously recorded information about the reference light

    Modulation of a Chirp Gravitational Wave from a Compact Binary due to Gravitational Lensing

    Get PDF
    A possible wave effect in the gravitational lensing phenomenon is discussed. We consider the interference of two coherent gravitational waves of slightly different frequencies from a compact binary, due to the gravitational lensing by a galaxy halo. This system shows the modulation of the wave amplitude. The lensing probability of such the phenomenon is of order 10^{-5} for a high-z source, but it may be advantageous to the observation due to the magnification of the amplitude.Comment: 3 pages, PRD in pres

    Query processing of spatial objects: Complexity versus Redundancy

    Get PDF
    The management of complex spatial objects in applications, such as geography and cartography, imposes stringent new requirements on spatial database systems, in particular on efficient query processing. As shown before, the performance of spatial query processing can be improved by decomposing complex spatial objects into simple components. Up to now, only decomposition techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have been considered. In this paper, we will investigate the natural trade-off between the complexity of the components and the redundancy, i.e. the number of components, with respect to its effect on efficient query processing. In particular, we present two new decomposition methods generating a better balance between the complexity and the number of components than previously known techniques. We compare these new decomposition methods to the traditional undecomposed representation as well as to the well-known decomposition into convex polygons with respect to their performance in spatial query processing. This comparison points out that for a wide range of query selectivity the new decomposition techniques clearly outperform both the undecomposed representation and the convex decomposition method. More important than the absolute gain in performance by a factor of up to an order of magnitude is the robust performance of our new decomposition techniques over the whole range of query selectivity

    Conjunctive query inseparability of OWL 2 QL TBoxes

    Get PDF
    The OWL2 profile OWL 2 QL, based on the DL-Lite family of description logics, is emerging as a major language for developing new ontologies and approximating the existing ones. Its main application is ontology based data access, where ontologies are used to provide background knowledge for answering queries over data. We investigate the corresponding notion of query inseparability (or equivalence) for OWL 2 QL ontologies and show that deciding query inseparability is PSpace-hard and in ExpTime. We give polynomial-time (incomplete) algorithms and demonstrate by experiments that they can be used for practical module extraction

    Module extraction via query inseparability in OWL 2 QL

    Get PDF
    We show that deciding conjunctive query inseparability for OWL 2 QL ontologies is PSpace-hard and in ExpTime. We give polynomial-time (incomplete) algorithms and demonstrate by experiments that they can be used for practical module extraction

    Cosmic shear surveys

    Get PDF
    Gravitational weak shear produced by large-scale structures of the universe induces a correlated ellipticity distribution of distant galaxies. The amplitude and evolution with angular scale of the signal depend on cosmological models and can be inverted in order to constrain the power spectrum and the cosmological parameters. We present our recent analysis of 50 uncorrelated VLT fields and the very first constrains on (Ωm,σ8\Omega_m,\sigma_8) and the nature of primordial fluctuations based on the join analysis of present-day cosmic shear surveys.Comment: Latex, 7 pages. To appear in the ESO Proceedings ``Deep Fields'', Garching Oct 9-12, 200

    First detection of CF+ towards a high-mass protostar

    Get PDF
    We report the first detection of the J = 1 - 0 (102.6 GHz) rotational lines of CF+ (fluoromethylidynium ion) towards CygX-N63, a young and massive protostar of the Cygnus X region. This detection occurred as part of an unbiased spectral survey of this object in the 0.8-3 mm range, performed with the IRAM 30m telescope. The data were analyzed using a local thermodynamical equilibrium model (LTE model) and a population diagram in order to derive the column density. The line velocity (-4 km s-1) and line width (1.6 km s-1) indicate an origin from the collapsing envelope of the protostar. We obtain a CF+ column density of 4.10e11 cm-2. The CF+ ion is thought to be a good tracer for C+ and assuming a ratio of 10e-6 for CF+/C+, we derive a total number of C+ of 1.2x10e53 within the beam. There is no evidence of carbon ionization caused by an exterior source of UV photons suggesting that the protostar itself is the source of ionization. Ionization from the protostellar photosphere is not efficient enough. In contrast, X-ray ionization from the accretion shock(s) and UV ionization from outflow shocks could provide a large enough ionizing power to explain our CF+ detection. Surprisingly, CF+ has been detected towards a cold, massive protostar with no sign of an external photon dissociation region (PDR), which means that the only possibility is the existence of a significant inner source of C+. This is an important result that opens interesting perspectives to study the early development of ionized regions and to approach the issue of the evolution of the inner regions of collapsing envelopes of massive protostars. The existence of high energy radiations early in the evolution of massive protostars also has important implications for chemical evolution of dense collapsing gas and could trigger peculiar chemistry and early formation of a hot core.Comment: 6 page
    corecore